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Intro

Motivation

The Amazon forest contains 123±23 billion tons of captured carbon
that can be released to the atmosphere.(above+below ground)

Brazilian Amazon occupies 60% of the 2.7 million square miles that
comprise the Amazon.

An area the size of Texas has been deforested in the Brazilian
Amazon.

Portions of Amazon have become a source instead of sink for carbon.
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Intro

Emissions curve
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Intro

This research

Studies the problem of a fictitious social planner to provide a
benchmark for ad hoc policy alternatives

Analyzes a dynamic model across heterogeneous regions in the
Amazon

Exploits a rich panel data set that covers a cross-section of regions in
the Amazon

Uses numerical methods to achieve a necessary degree of economic
and environmental richness to achieve credible results.

Implements a novel refinement to uncertainty quantification.
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Model

Today

1 Present basic model

2 Discuss calibration

3 Present results
4 Parameter ambiguity

Computation using Hamiltonian Monte Carlo

5 Interactions across sites.
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Model

State and control variables

Sites are denoted i = 1, . . . , I and the state-vector by (Z ,X ,Pa).

Z = (Z 1, . . .Z I ), is the vector of site-specific hectares of land used
for agriculture.

X = (X 1, . . . ,X I ) is the vector of site-specific stocks of captured
carbon (above ground).

Pa is an index of cattle prices in Brazil in 2017 USD.

85% of deforested land is used for cattle raising.

Pe is the social price of emissions

Control Ż

State constraints:
0 ≤ Z i

t ≤ z̄ i ,

where z̄ i is the maximum area for agriculture in site i .
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Model

State dynamics

Carbon capture dynamics

Ẋ i = −γ i max{Ż i , 0} − αX i + αγi
(
z̄ i − Z i

)
where γ i > 0 and α > 0.

Does not allow for interactions across sites.

q state Markov chain with possible values for the agricultural price,
pa1, . . . p

a
q

An infinitesimal generator given by q × q matrix M = [mℓ,ℓ′ ] with
non-negative off-diagonal entries and∑

ℓ′ ̸=ℓ

mℓℓ′ = −mℓℓ > 0.
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Model

Outputs

Agricultural output
Ai = θiPaZ i

where θi ≥ 0 is a site specific productivity parameter.

Net emissions

κ

I∑
i=1

Z i
t −

I∑
i=1

Ẋ i
t

where κ > 0 measures the emissions per hectare of land induced by
agriculture.
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Model

Quadratic adjustment cost

Aggregate investment/disinvestment in agriculture over sites

I∑
i=1

|Ż i |

Quadratic costs

ζ

2

(
I∑

i=1

|Ż i |

)2
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Model

Social planner’s objective

Planner maximizes∫ ∞

0
exp(−δt)E

(
I∑

i=1

[
Pe
(
Ẋ i
t − κZ i

t

)
+ Pa

t θiZ
i
t

]

−ζ

2

[
I∑

i=1

∣∣∣Ż i
t

∣∣∣]2 | F0

 dt

Planner chooses site-specific controls U i subject to the state
evolution equations and the initial states

Pe , price of emissions, reflects a market for offsets and/or a planner’s
own valuation.

Parameter heterogeneity often implies boundary solutions for sites.
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Model

Adding parameter uncertainty

φi = (γ i , θi ), φ full 2I dim parameter vector.

φ = φ(β), dim(β) < 2I .

π baseline distribution of β.

d be the vector of decisions and f (d ,φ(β)) for the resulting value
given the unknown β.

max
d

min
g ,
∫
gdπ=1

∫
f (d ,β)g(β)dπ(β) + ξ

∫
log g(β)g(β)dπ(β)

ξ > 0 is penalty parameter.

minimizing g given by:

gd (β) =
exp

[
−1

ξ f (d ,β)
]
π(β)∫

β̃ exp
[
−1

ξ f (d , β̃)
]
dπ(β̃)

(1)
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Calibration

Sites and initial states

Sites:

Fine grid of 1887 sites of ≈ 67 km × 67 km. Of these 1043 have at
least 3% ot area in the Brazilian Amazon biome. Featured in results
today without price uncertainty; solve as a deterministic model
Coarser grid of 78 sites (featured in results with agricultural price
uncertainty, solve using MPC methods with a Markov process for prices
of agricultural output and on results about parameter uncertainty and
for comparison, deterministic model): Aggregate 16 sites of fine grid to
produce sites of ≈ 268km × 268km.

Drop three sites with < 3% in Brazilian Amazon biome.

Agricultural areas in 2017 (Z i
0)

Source: MapBiomas

Total land available in 2017 (z̄ i )

Source: MapBiomas

X i
0 = γ i (z̄ i − Z i

0).
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Calibration

Agriculture productivity

Data on cattle sales and area of agriculture for 500+ municipalities
that overlapp the biome from 2017 Agriculture Census.

Regression on geographical variables yield smoother representation
and fills in missing data.

Missing data and unlikely outliers for municipalities with small
agricultural area.

Calculate θi for individual sites by weighted average over
municipalities.

Heterogeneity reflects transportation cost and current technology.

Agricultural price dynamics from monthly observations of cattle prices
in Brazil using the 25% and 75% quantiles to infer two-state
transition matrix.
Adjustment cost parameter, ζ, set so marginal cost of changing land
use matches forest to pasture transition cost estimated by Araujo,
Costa, and Sant’Anna (2022).

Need to explore asymmetry
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Calibration

Carbon dynamics I

γ i : Extract random sample of 1.2M 30m-pixels and select 893,753
pixels that could be considered primary forest in 2018 (pixels with no
deforestation at least since 1985). Add above ground biomass density
data for 2017, from ESA Biomass (Santoro and Cartus (2021)).
Biomass data comes in a grid format ∼100m, so spatially match it to
sample and calculate average CO2 density (Mg/ha).

Calculate mean γ i for municipalities.

Regression on geographical variables yield smoother representation
and fills in missing data.

Calculate site γ i by weighted average over overlapping municipalities.

α, carbon depreciation parameter, set so convergence of carbon
accumulation process is 100 years. (Henrich et al.(2021)).

κ calibrated from agricultural net annual emission data at the state
level available from SEEG.
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Calibration

Baseline distribution

Use conjugate prior updating (Hansen and Sargent (2013), Section
5.3) to produce a baseline distribution π of the vector β that is used
for the case of parameter uncertainty
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Calibration

Site-specific Parameters γ i and θi (1043 sites)
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Results

Computational Approach

Discrete-time (year) approximation

Deterministic prices (78 or 1043 sites): Interior Point Method:
inequalities are approximated with logarithmic penalty functions.

Uncertain prices (78 sites): Add Model Predictive Control:
Finite-horizon approximation with two horizons:

Relatively short uncertainty horizon (u.h.) where controls are computed
as a function of potential shock realizations ( six periods);
Longer horizon where the control solutions are approximated by
eliminating shocks beyond the uncertainty horizon ( 200 periods).

Solve the model again in subsequent periods with the same u.h..
Choose u.h.= 6) because value function changes little from u.h. = 5.
Interested in first 50 years
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Results

Parameter uncertainty

i) Given a g , solve the maximization problem for a candidate d . May
ignore relative entropy penalty.

ii) For given d , solve the minimization problem to obtain new g .

iii) Repeat until achieve convergence.

For step ii) use quasi-analytical solution (1) and Markov chain Monte
Carlo method that is based on Hamiltonian dynamics. and that is
often more efficient for high dimensional problems than
Metropolis-Hastings (Neal et al. (2011), Carpenter, Gelman, Hoffman,
Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell (2017)).
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Results

Planner’s own valuation - Inferred shadow price of carbon
from aggregate behavior 1995-2008

1995 - Begin reliable price data. 2008 - Announcement of Amazon
Fund that incentivizes preservation of the forest with resources from
Norway. ( NOK 8.3 billion in 2009-2018)

Observe prices Pa
t in 95-08 and find Pee that produces Z2008 = Z o

2008.

Price Pee that matches observed deforestation varies with model
chosen.

A model where, implicitly, a planner would act more aggressively
against preservation would imply a larger Pee .

Larger Pee applied to future decisions lowers deforestation ( increase
reforestation).

Pee that vary with model brings future trajectories across models
closer.

Similar observation when comparing discount rates.
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Results

Evolution of agricultural area (deterministic case, Pa = P s)

1043 Sites 78 Sites

Pee = $7.9 ($7.5) for 1043 (78) sites

Business as usual agr. area ∼ 25% - may result on tipping of east,
south and central Amazon (Lovejoy and Nobre (2018))
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Results

Evolution of occupation by agriculture, 78 sites,
b = 15,Pa = P s

Much of the reallocation in 15 years
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Results

Evolution of occupation by agriculture, 1043 sites,
b = 15,Pa = P s

Much of the reallocation in 15 years
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Results

Planner Value Decomposition (200 years)

Table: 78 Sites - Deterministic case

Pa

($)
Pe

($)
b
($)

Agricultural
Output
($ 1011)

Net
Transfers
($ 1011)

Climate
Services
($ 1011)

Adjustment
Costs

($ 1011)

Planner
Value

($ 1011)

42.03 7.5 0 3.86 0.00 -1.57 0.08 2.21
42.03 17.5 10 0.52 1.16 0.87 0.12 2.43
42.03 22.5 15 0.28 1.97 0.98 0.18 3.05
42.03 27.5 20 0.21 2.71 1.01 0.22 3.72
42.03 32.5 25 0.18 3.45 1.03 0.26 4.40

44.76 7.5 0 4.27 0.00 -1.72 0.09 2.47
44.76 17.5 10 0.67 1.08 0.81 0.10 2.46
44.76 22.5 15 0.31 1.95 0.98 0.16 3.07
44.76 27.5 20 0.24 2.70 1.01 0.22 3.74
44.76 32.5 25 0.19 3.44 1.03 0.25 4.42

Notes: For Pa, 42.03 is the stationary price and 44.76 is the high price (75th percentile of the
series). Climate services are calculated using baseline shadow price (b = 0).
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Results

Planner Value Decomposition (200 years)

Table: 1043 Sites - Deterministic case

Pa

($)
Pe

($)
b
($)

Agricultural
Output
($ 1011)

Net
Transfers
($ 1011)

Climate
Services
($ 1011)

Adjustment
Costs

($ 1011)

Planner
Value

($ 1011)

42.03 7.9 0 3.83 0.00 -1.33 0.07 2.42
42.03 17.9 10 0.66 1.10 0.87 0.11 2.52
42.03 22.9 15 0.39 1.89 0.99 0.17 3.12
42.03 27.9 20 0.25 2.67 1.05 0.21 3.77
42.03 32.9 25 0.21 3.41 1.08 0.26 4.44

44.76 7.9 0 4.38 0.00 -1.60 0.09 2.68
44.76 17.9 10 0.85 1.02 0.80 0.10 2.57
44.76 22.9 15 0.45 1.87 0.98 0.16 3.15
44.76 27.9 20 0.33 2.63 1.03 0.21 3.79
44.76 32.9 25 0.23 3.40 1.07 0.25 4.46

Notes: For Pa, 42.03 is the stationary price and 44.76 is the high price (75th percentile of the
series). Climate services are calculated using baseline shadow price (b = 0).
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Results

Transfer cost (30 years, 78 sites)

Pa

($)
Pe

($)
b
($)

Net Captured
Emissions
(billion tons
of CO2e)

Net Transfers
($ 1011)

Effective cost
($ per ton
of CO2e)

42.03 7.5 0 -21.12 0.00 NaN
42.03 17.5 10 11.79 1.17 3.58
42.03 22.5 15 13.99 2.09 5.97
42.03 27.5 20 14.66 2.93 8.19
42.03 32.5 25 14.98 3.74 10.37

38.30 7.5 0 -11.05 0.00 NaN
38.30 17.5 10 12.63 1.26 5.33
38.30 22.5 15 14.23 2.13 8.44
38.30 27.5 20 14.75 2.95 11.43
38.30 32.5 25 15.05 3.76 14.41

Notes: For Pa, 42.03 is the stationary price and 38.30 is the low price (25th
percentile of the series). 78 sites included.

Gains from trade
Even with Pa,ℓ, $8.44/ton lowers emissions by 25GT ∼10% of IPCC
budget for 50% chance of ≤ 1.5◦C from 2023 (250 GT). 25 / 42



Results

Evolution of agricultural area ( Uncertainty on Pa)

Pee =$7.1
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Results

Planner value decomposition (200 years)

Table: 78 Sites - MPC case

Pe

($)
b
($)

Agricultural
Output
($ 1011)

Net
Transfers
($ 1011)

Climate
Services
($ 1011)

Adjustment
Costs

($ 1011)

Planner
Value

($ 1011)

7.1 0 3.67 0.00 -1.45 0.07 2.14
17.1 10 0.48 1.17 0.83 0.12 2.36
22.1 15 0.25 1.98 0.93 0.18 2.99
27.1 20 0.20 2.72 0.96 0.23 3.66
32.1 25 0.17 3.46 0.98 0.27 4.34

Notes: Climate services calculated using baseline shadow price (b = 0).
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Results

Transfer cost (30 years)

Table: 78 Sites - MPC case

Pe

($)
b
($)

Net Captured
Emissions
(billion tons
of CO2e)

Net Transfers
($ 1011)

Effective cost
($ per ton
of CO2e)

7.1 0 -18.94 0.00 NaN
17.1 10 12.18 1.21 3.91
22.1 15 14.14 2.12 6.41
27.1 20 14.71 2.94 8.74
32.1 25 15.02 3.75 11.05
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Results

Parameter uncertainty

Hamiltonian Monte Carlo

ξ = 2

Pee = 6.5
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Results

Ambiguity adjustment, b = 20, Pa = P s
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Results

Ambiguity adjustment, b = 20, Pa = P s
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Results

Ambiguity adjustment, b = 20, Pa = P s

32 / 42



Results

Evolution of agricultural area: productivity ambiguity,
b = 20, Pa = P s
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Results

Year in which reforestation in site i begins (b = 20)

ambiguity no ambiguity
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Results

Planner Value Decomposition (200 years)

Table: 78 Sites - HMC case

Pe

($)
b
($)

Agricultural
Output
($ 1011)

Net
Transfers
($ 1011)

Climate
Services
($ 1011)

Adjustment
Costs

($ 1011)

Planner
Value

($ 1011)

6.5 0 3.20 0.00 -1.27 0.06 1.87
16.5 10 0.56 1.07 0.70 0.10 2.24
21.5 15 0.29 1.87 0.81 0.16 2.81
26.5 20 0.23 2.57 0.83 0.21 3.42
31.5 25 0.18 3.28 0.86 0.25 4.07

Notes: Pa = 42.03, tghe stationary price. Climate services are calculated using baseline
shadow price (b = 0).
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Results

Transfer cost (30 years)

Table: 78 Sites - HMC case

Pe

($)
b
($)

Net Captured
Emissions
(billion tons
of CO2e)

Net Transfers
($ 1011)

Effective cost
($ per ton
of CO2e)

6.5 0 -17.73 0.00 NaN
16.5 10 10.85 1.08 3.79
21.5 15 13.20 1.98 6.40
26.5 20 13.85 2.77 8.77
31.5 25 14.22 3.55 11.12
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Interactions across sites

Interactions across sites

Araujo, Assunção, Hirota, and Scheinkman (2023).

Amazon produces large fraction of its own rainfall

Rainfall → trees’ transpiration → recharges atmospheric humidity →
humidity moves downwind → rainfall.

Less trees → less water. Deforestation → degradation.

Mapping transport of water: atmospheric trajectories

Use variations in back trajectories to estimate impact of upwind Leaf
Area Index (LAI) on downwind LAI

On average, deforestation has a “multiplier” of 2.05.

Additional externality
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Interactions across sites

Multiplier Effect: A: total effect of pixels; B: total
effect on pixels.
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Interactions across sites

Transboundary Cascading Effects

Rondônia: one of the most active frontiers of deforestation

17 pixels (25km x 25km) in Rondônia, which are among the highest
5% deforested pixels in the biome.

Deforestation causes degradation as far as Bolivia

Deforestation multiplier of 1.87.
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Conclusion

Conclusions

Posed explicit dynamic model across heterogeneous regions in
Amazon to assess potential adverse impact of deforestation.

Rich panel data set

Computational challenge because the heterogeneity of subregions
requires large number of state variables and state-constraints that
bind at optimum.

Parameter uncertainty

With modest prices for CO2e, Brazilian Amazon would produce
noticiable CO2 capture.

Compared to IPCC budget
Compared to Griscom, Adams, Ellis, Houghton, Lomax, Miteva,
Schlesinger, Shoch, Siikamäki, Smith, et al. (2017) that identify and
quantify “natural climate solutions” (NCS).

Interactions across sites make predicted path under “business as
usual” even more perilous.
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