Carbon prices and forest preservation over time and space in the Brazilian Amazon

Jose A. Scheinkman (Columbia University)

BBVA Lecture, LAMES, November 2023

Based on work with Juliano Assunção (Climate Policy Initiative and PUC-Rio), Lars P. Hansen (University of Chicago), and Todd Munson (Argonne National Laboratories)

Motivation

- The Amazon forest contains 123±23 billion tons of captured carbon that can be released to the atmosphere.(above+below ground)
- Brazilian Amazon occupies 60% of the 2.7 million square miles that comprise the Amazon.
- An area the size of Texas has been deforested in the Brazilian Amazon.

Intro

• Portions of Amazon have become a source instead of sink for carbon.

Emissions curve

Intro

This research

• Studies the problem of a **fictitious social planner** to provide a benchmark for *ad hoc* policy alternatives

Intro

- Analyzes a dynamic model across heterogeneous regions in the Amazon
- Exploits a rich panel data set that covers a cross-section of regions in the Amazon
- Uses numerical methods to achieve a necessary degree of economic and environmental richness to achieve credible results.
- Implements a novel refinement to uncertainty quantification.

Today

- Present basic model
- 2 Discuss calibration
- ③ Present results
- ④ Parameter ambiguity
 - Computation using Hamiltonian Monte Carlo
- Interactions across sites.

State and control variables

- Sites are denoted i = 1, ..., I and the state-vector by (Z, X, P^a) .
- Z = (Z¹,...Z[']), is the vector of site-specific hectares of land used for agriculture.
- $X = (X^1, ..., X^l)$ is the vector of site-specific stocks of captured carbon (above ground).
- P^a is an index of cattle prices in Brazil in 2017 USD.
 85% of deforested land is used for cattle raising.
- P^e is the social price of emissions
- Control Ż
- State constraints:

$$0\leq Z_t^i\leq \bar{z}^i,$$

where \bar{z}^i is the maximum area for agriculture in site *i*.

Mode

State dynamics

Carbon capture dynamics

$$\dot{X}^{i}=-\gamma^{i}\max\{\dot{Z}^{i},0\}-lpha X^{i}+lpha\gamma^{i}\left(ar{z}^{i}-Z^{i}
ight)$$

where $\gamma^i > 0$ and $\alpha > 0$.

Does not allow for interactions across sites.

- q state Markov chain with possible values for the agricultural price, p_1^a, \ldots, p_q^a
- An infinitesimal generator given by $q \times q$ matrix $\mathbb{M} = [m_{\ell,\ell'}]$ with non-negative off-diagonal entries and

$$\sum_{\ell'\neq\ell}m_{\ell\ell'}=-m_{\ell\ell}>0.$$

Outputs

Agricultural output

$$A^i = \theta^i P^a Z^i$$

where $\theta^i \ge 0$ is a site specific productivity parameter.

Net emissions

$$\kappa \sum_{i=1}^{I} Z_t^i - \sum_{i=1}^{I} \dot{X}_t^i$$

where $\kappa>0$ measures the emissions per hectare of land induced by agriculture.

Quadratic adjustment cost

• Aggregate investment/disinvestment in agriculture over sites

• Quadratic costs

$$\frac{\zeta}{2} \left(\sum_{i=1}^{I} |\dot{Z}^i| \right)^2$$

Social planner's objective

Planner maximizes

$$\int_{0}^{\infty} \exp(-\delta t) \mathcal{E}\left(\sum_{i=1}^{I} \left[P^{e}\left(\dot{X}_{t}^{i}-\kappa Z_{t}^{i}\right)+P_{t}^{a}\theta_{i}Z_{t}^{i}\right]\right.\\\left.-\frac{\zeta}{2}\left[\sum_{i=1}^{I}\left|\dot{Z}_{t}^{i}\right|\right]^{2}\mid\mathfrak{F}_{0}\right) dt$$

- Planner chooses site-specific controls U^i subject to the state evolution equations and the initial states
- *P^e*, price of emissions, reflects a market for offsets and/or a planner's own valuation.
- Parameter heterogeneity often implies boundary solutions for sites.

Adding parameter uncertainty

•
$$\varphi^{i} = (\gamma^{i}, \theta^{i}), \varphi$$
 full 21 dim parameter vector.

- $\varphi = \varphi(\beta), \dim(\beta) < 2I.$
- π baseline distribution of β .
- *d* be the vector of decisions and *f*(*d*, φ(β)) for the resulting value given the unknown β.

۲

$$\max_{\boldsymbol{d}} \min_{g, \int g d\pi = 1} \int f(\boldsymbol{d}, \beta) g(\beta) d\pi(\beta) + \xi \int \log g(\beta) g(\beta) d\pi(\beta)$$

- $\xi > 0$ is penalty parameter.
- minimizing g given by:

$$g_{\boldsymbol{d}}(\beta) = \frac{\exp\left[-\frac{1}{\xi}f(\boldsymbol{d},\beta)\right]\pi(\beta)}{\int_{\tilde{\beta}}\exp\left[-\frac{1}{\xi}f(\boldsymbol{d},\tilde{\beta})\right]d\pi(\tilde{\beta})}$$
(1)

Sites and initial states

- Sites:
 - Fine grid of 1887 sites of \approx 67 km \times 67 km. Of these 1043 have at least 3% ot area in the Brazilian Amazon biome. Featured in results today without price uncertainty; solve as a deterministic model
 - Coarser grid of 78 sites (featured in results with agricultural price uncertainty, solve using MPC methods with a Markov process for prices of agricultural output and on results about parameter uncertainty and for comparison, deterministic model): Aggregate 16 sites of fine grid to produce sites of $\approx 268 \rm km \times 268 \rm km.$

 $\,$ $\,$ Drop three sites with < 3% in Brazilian Amazon biome.

- Agricultural areas in 2017 (Z_0^i)
 - Source: MapBiomas
- Total land available in 2017 (\bar{z}^i)
 - Source: MapBiomas

•
$$X_0^i = \gamma^i (\overline{z}^i - Z_0^i).$$

Agriculture productivity

- Data on cattle sales and area of agriculture for 500+ municipalities that overlapp the biome from 2017 Agriculture Census.
- Regression on geographical variables yield smoother representation and fills in missing data.
- Missing data and unlikely outliers for municipalities with small agricultural area.
- Calculate θⁱ for individual sites by weighted average over municipalities.
- Heterogeneity reflects transportation cost and current technology.
- Agricultural price dynamics from monthly observations of cattle prices in Brazil using the 25% and 75% quantiles to infer two-state transition matrix.
- Adjustment cost parameter, ζ, set so marginal cost of changing land use matches forest to pasture transition cost estimated by Araujo, Costa, and Sant'Anna (2022).
 - Need to explore asymmetry

Carbon dynamics I

- γⁱ: Extract random sample of 1.2M 30*m*-pixels and select 893,753 pixels that could be considered **primary forest** in 2018 (pixels with no deforestation at least since 1985). Add *a*bove ground biomass density data for 2017, from ESA Biomass (Santoro and Cartus (2021)). Biomass data comes in a grid format ~100m, so spatially match it to sample and calculate average *CO*₂ density (Mg/ha).
- Calculate mean γ^i for municipalities.
- Regression on geographical variables yield smoother representation and fills in missing data.
- Calculate site γ^i by weighted average over overlapping municipalities.
- α , carbon depreciation parameter, set so convergence of carbon accumulation process is 100 years. (Henrich et al.(2021)).
- κ calibrated from agricultural net annual emission data at the state level available from SEEG.

Baseline distribution

Use conjugate prior updating (Hansen and Sargent (2013), Section 5.3) to produce a baseline distribution π of the vector β that is used for the case of parameter uncertainty

Site-specific Parameters γ^i and θ^i (1043 sites)

Computational Approach

- Discrete-time (year) approximation
- Deterministic prices (78 or 1043 sites): Interior Point Method: inequalities are approximated with logarithmic penalty functions.
- Uncertain prices (78 sites): Add Model Predictive Control:
 - Finite-horizon approximation with two horizons:
 - Relatively short uncertainty horizon (u.h.) where controls are computed as a function of potential shock realizations (six periods);
 - Longer horizon where the control solutions are approximated by eliminating shocks beyond the uncertainty horizon (200 periods).
 - Solve the model again in subsequent periods with the same u.h..
 - Choose u.h.=6) because value function changes little from u.h. = 5.
 - Interested in first 50 years

Parameter uncertainty

- Given a g, solve the maximization problem for a candidate d. May ignore relative entropy penalty.
- **(**) For given d, solve the minimization problem to obtain new g.
- Repeat until achieve convergence.
 - For step ii) use quasi-analytical solution (1) and Markov chain Monte Carlo method that is based on Hamiltonian dynamics. and that is often more efficient for high dimensional problems than Metropolis-Hastings (Neal et al. (2011), Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt, Brubaker, Guo, Li, and Riddell (2017)).

Planner's own valuation - Inferred shadow price of carbon from aggregate behavior 1995-2008

- 1995 Begin reliable price data. 2008 Announcement of Amazon Fund that incentivizes preservation of the forest with resources from Norway. (NOK 8.3 billion in 2009-2018)
- Observe prices P_t^a in 95-08 and find P^{ee} that produces $Z_{2008} = Z_{2008}^o$.
- Price *P*^{ee} that matches observed deforestation varies with model chosen.
- A model where, implicitly, a planner would act more aggressively against preservation would imply a larger *P^{ee}*.
- Larger *P*^{ee} applied to future decisions lowers deforestation (increase reforestation).
- *P^ee* that vary with model brings future trajectories across models closer.
- Similar observation when comparing discount rates.

Evolution of agricultural area (deterministic case, $P^a = P^s$)

- $P^{ee} =$ \$7.9 (\$7.5) for 1043 (78) sites
- Business as usual agr. area $\sim 25\%$ may result on tipping of east, south and central Amazon (Lovejoy and Nobre (2018))

Evolution of occupation by agriculture, 78 sites, $b = 15, P^a = P^s$

• Much of the reallocation in 15 years

Evolution of occupation by agriculture, 1043 sites, $b = 15, P^a = P^s$

• Much of the reallocation in 15 years

Planner Value Decomposition (200 years)

Table: 78 Sites - Deterministic case

P ^a (\$)	Р ^е (\$)	b (\$)	Agricultural Output (\$ 10 ¹¹)	Net Transfers (\$ 10 ¹¹)	Climate Services (\$ 10 ¹¹)	Adjustment Costs (\$ 10 ¹¹)	Planner Value (\$ 10 ¹¹)
42.03	7.5	0	3.86	0.00	-1.57	0.08	2.21
42.03	17.5	10	0.52	1.16	0.87	0.12	2.43
42.03	22.5	15	0.28	1.97	0.98	0.18	3.05
42.03	27.5	20	0.21	2.71	1.01	0.22	3.72
42.03	32.5	25	0.18	3.45	1.03	0.26	4.40
44.76	7.5	0	4.27	0.00	-1.72	0.09	2.47
44.76	17.5	10	0.67	1.08	0.81	0.10	2.46
44.76	22.5	15	0.31	1.95	0.98	0.16	3.07
44.76	27.5	20	0.24	2.70	1.01	0.22	3.74
44.76	32.5	25	0.19	3.44	1.03	0.25	4.42

Notes: For P^a , 42.03 is the stationary price and 44.76 is the high price (75th percentile of the series). Climate services are calculated using baseline shadow price (b = 0).

Planner Value Decomposition (200 years)

Table: 1043 Sites - Deterministic case

P ^a (\$)	Р ^е (\$)	b (\$)	Agricultural Output (\$ 10 ¹¹)	Net Transfers (\$ 10 ¹¹)	Climate Services (\$ 10 ¹¹)	Adjustment Costs (\$ 10 ¹¹)	Planner Value (\$ 10 ¹¹)
42.03	7.9	0	3.83	0.00	-1.33	0.07	2.42
42.03	17.9	10	0.66	1.10	0.87	0.11	2.52
42.03	22.9	15	0.39	1.89	0.99	0.17	3.12
42.03	27.9	20	0.25	2.67	1.05	0.21	3.77
42.03	32.9	25	0.21	3.41	1.08	0.26	4.44
44.76	7.9	0	4.38	0.00	-1.60	0.09	2.68
44.76	17.9	10	0.85	1.02	0.80	0.10	2.57
44.76	22.9	15	0.45	1.87	0.98	0.16	3.15
44.76	27.9	20	0.33	2.63	1.03	0.21	3.79
44.76	32.9	25	0.23	3.40	1.07	0.25	4.46

Notes: For P^a , 42.03 is the stationary price and 44.76 is the high price (75th percentile of the series). Climate services are calculated using baseline shadow price (b = 0).

Transfer cost (30 years, 78 sites)

Pª (\$)	Р ^е (\$)	b (\$)	Net Captured Emissions (billion tons of CO2e)	Net Transfers (\$ 10 ¹¹)	Effective cost (\$ per ton of CO2e)
42.03	7.5	0	-21.12	0.00	NaN
42.03	17.5	10	11.79	1.17	3.58
42.03	22.5	15	13.99	2.09	5.97
42.03	27.5	20	14.66	2.93	8.19
42.03	32.5	25	14.98	3.74	10.37
38.30	7.5	0	-11.05	0.00	NaN
38.30	17.5	10	12.63	1.26	5.33
38.30	22.5	15	14.23	2.13	8.44
38.30	27.5	20	14.75	2.95	11.43
38.30	32.5	25	15.05	3.76	14.41

Notes: For P^a , 42.03 is the stationary price and 38.30 is the low price (25th percentile of the series). 78 sites included.

- Gains from trade
- Even with P^{a,ℓ}, \$8.44/ton lowers emissions by 25GT ~10% of IPCC budget for 50% chance of ≤ 1.5°C from 2023 (250 GT).

Evolution of agricultural area (Uncertainty on P^a)

• P^{ee} =\$7.1

Planner value decomposition (200 years)

Table: 78 Sites - MPC case

Р ^е (\$)	b (\$)	Agricultural Output (\$ 10 ¹¹)	Net Transfers (\$ 10 ¹¹)	Climate Services (\$ 10 ¹¹)	Adjustment Costs (\$ 10 ¹¹)	Planner Value (\$ 10 ¹¹)
7.1	0	3.67	0.00	-1.45	0.07	2.14
17.1	10	0.48	1.17	0.83	0.12	2.36
22.1	15	0.25	1.98	0.93	0.18	2.99
27.1	20	0.20	2.72	0.96	0.23	3.66
32.1	25	0.17	3.46	0.98	0.27	4.34

Notes: Climate services calculated using baseline shadow price (b = 0).

Transfer cost (30 years)

Table: 78 Sites - MPC case

Р ^е (\$)	b (\$)	Net Captured Emissions (billion tons of CO2e)	Net Transfers (\$ 10 ¹¹)	Effective cost (\$ per ton of CO2e)
7.1	0	-18.94	0.00	NaN
17.1	10	12.18	1.21	3.91
22.1	15	14.14	2.12	6.41
27.1	20	14.71	2.94	8.74
32.1	25	15.02	3.75	11.05

Parameter uncertainty

- Hamiltonian Monte Carlo
- $P^{ee} = 6.5$

Ambiguity adjustment, b = 20, $P^a = P^s$

Ambiguity adjustment, b = 20, $P^a = P^s$

Ambiguity adjustment, b = 20, $P^a = P^s$

Evolution of agricultural area: productivity ambiguity, $b = 20, P^a = P^s$

Year in which reforestation in site *i* begins (b = 20)

ambiguity

no ambiguity

Planner Value Decomposition (200 years)

Table: 78 Sites - HMC case

Р ^е (\$)	b (\$)	Agricultural Output (\$ 10 ¹¹)	Net Transfers (\$ 10 ¹¹)	Climate Services (\$ 10 ¹¹)	Adjustment Costs (\$ 10 ¹¹)	Planner Value (\$ 10 ¹¹)
6.5	0	3.20	0.00	-1.27	0.06	1.87
16.5	10	0.56	1.07	0.70	0.10	2.24
21.5	15	0.29	1.87	0.81	0.16	2.81
26.5	20	0.23	2.57	0.83	0.21	3.42
31.5	25	0.18	3.28	0.86	0.25	4.07

Notes: $P^a = 42.03$, tghe stationary price. Climate services are calculated using baseline shadow price (b = 0).

Transfer cost (30 years)

Table: 78 Sites - HMC case

Р ^е (\$)	b (\$)	Net Captured Emissions (billion tons of CO2e)	Net Transfers (\$ 10 ¹¹)	Effective cost (\$ per ton of CO2e)
6.5	0	-17.73	0.00	NaN
16.5	10	10.85	1.08	3.79
21.5	15	13.20	1.98	6.40
26.5	20	13.85	2.77	8.77
31.5	25	14.22	3.55	11.12

Interactions across sites

- Araujo, Assunção, Hirota, and Scheinkman (2023).
- Amazon produces large fraction of its own rainfall
- Rainfall \rightarrow trees' transpiration \rightarrow recharges atmospheric humidity \rightarrow humidity moves downwind \rightarrow rainfall.
- $\bullet~$ Less trees $\rightarrow~$ less water. Deforestation $\rightarrow~$ degradation.
- Mapping transport of water: atmospheric trajectories
- Use variations in back trajectories to estimate impact of upwind Leaf Area Index (LAI) on downwind LAI
- On average, deforestation has a "multiplier" of 2.05.
- Additional externality

Multiplier Effect: A: total effect of pixels; B: total effect on pixels.

Transboundary Cascading Effects

- Rondônia: one of the most active frontiers of deforestation
- 17 pixels (25km x 25km) in Rondônia, which are among the highest 5% deforested pixels in the biome.
- Deforestation causes degradation as far as Bolivia
- Deforestation multiplier of 1.87.

Conclusions

- Posed explicit dynamic model across heterogeneous regions in Amazon to assess potential adverse impact of deforestation.
- Rich panel data set
- Computational challenge because the heterogeneity of subregions requires large number of state variables and state-constraints that bind at optimum.
 - Parameter uncertainty
- With modest prices for CO2e, Brazilian Amazon would produce noticiable CO₂ capture.
 - Compared to IPCC budget
 - Compared to Griscom, Adams, Ellis, Houghton, Lomax, Miteva, Schlesinger, Shoch, Siikamäki, Smith, et al. (2017) that identify and quantify "natural climate solutions" (NCS).
- Interactions across sites make predicted path under "business as usual" even more perilous.

References I

- Rafael Araujo, Francisco Costa, and Marcelo Sant'Anna. Efficient forestation in the brazilian amazon: Evidence from a dynamic model, 2022.
- Rafael Araujo, Juliano Assunção, Marina Hirota, and José A Scheinkman. Estimating the spatial amplification of damage caused by degradation in the amazon. *Proceedings of the National Academy of Sciences*, 120(46):e2312451120, 2023.
- Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming language. *Journal of statistical software*, 76, 2017.

References II

Bronson W Griscom, Justin Adams, Peter W Ellis, Richard A Houghton, Guy Lomax, Daniela A Miteva, William H Schlesinger, David Shoch, Juha V Siikamäki, Pete Smith, et al. Natural climate solutions. *Proceedings of the National Academy of Sciences*, 114(44): 11645–11650, 2017.

Lars Peter Hansen and Thomas J Sargent. Risk, uncertainty, and value. *Princeton, New Jersey: Princeton*, 2013.

Thomas E Lovejoy and Carlos Nobre. Amazon tipping point, 2018.Radford M Neal et al. Mcmc using hamiltonian dynamics. *Handbook of markov chain monte carlo*, 2(11):2, 2011.

Maurizio Santoro and Oliver Cartus. Esa biomass climate change initiative (biomass_cci): Global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3, 2021. URL https://catalogue.ceda.ac.uk/uuid/ 5f331c418e9f4935b8eb1b836f8a91b8.